Sodium channel activation in the squid giant axon. Steady state properties
نویسندگان
چکیده
Treatment of giant axons from the squid, Loligo pealei, with pronase removes Na channel inactivation. It was found that the peak Na current is increased, but the activation kinetics are not significantly altered, by pronase. Measurements of the fraction of open channels as a function of voltage (F-V) showed an e-folding at 7 mV and a center point near -15 mV. The rate of e-folding implies that a minimum of 4 e-/channel must cross the membrane field to open the channel. The charge vs. voltage (Q-V) curve measured in a pronase-treated axon is not significantly different from that measured when inactivation is intact: approximately 1,850 e-/micron2 were measured over the voltage range -150 to 50 mV, and the center point was near -30 mV. Normalizing these two curves (F-V and Q-V) and plotting them together reveals that they cross when inactivation is intact but saturate together when inactivation is removed. This illustrates the error one makes when measuring peak conductance with intact inactivation and interpreting that to be the fraction of open channels. A model is described that was used to interpret these results. In the model, we propose that inactivation must be slightly voltage dependent and that an interaction occurs between the inactivating particle and the gating charge. A linear sequence of seven states (a single open state with six closed states) is sufficient to describe the data presented here for Na channel activation in pronase-treated axons.
منابع مشابه
Sodium Channel Activation in the Squid Giant Axon Steady State Properties
Treatment of giant axons from the squid, Loligo pealei, with pronase removesNa channel inactivation . It was found that the peak Na current is increased, but the activation kinetics are not significantly altered, by pronase. Measurements of the fraction of open channels as a function of voltage (F-V) showed an e-folding at 7 mV and a center point near -15 mV. The rate of efolding implies that a...
متن کاملActivation of squid axon K+ channels. Ionic and gating current studies
We have used data obtained from measurements of ionic and gating currents to study the process of K+ channel activation in squid giant axons. A marked improvement in the recording of K+ channel gating currents (IKg) was obtained by total replacement of Cl- in the external solution by NO-3, which eliminates approximately 50% of the Na+ channel gating current with no effect on IKg. The midpoint o...
متن کاملEvidence for a population of sleepy sodium channels in squid axon at low temperature
We have studied the effects of temperature changes on Na currents in squid giant axons. Decreases in temperature in the 15-1 degrees C range decrease peak Na current with a Q10 of 2.2. Steady state currents, which are tetrodotoxin sensitive and have the same reversal potential as peak currents, are almost unaffected by temperature changes. After removal of inactivation by pronase treatment, ste...
متن کاملProperties of appropriately and inappropriately expressed sodium channels in squid giant axon and its somata.
Neurons that form the giant axons in squid by axonal fusion in the stellate ganglion are inexcitable and do not express functional voltage-controlled sodium (Na) channels in their somata in vivo. These cells do express Na channels in the soma membrane in vitro, however, provided they have been axotomized. We describe here voltage-clamp experiments on the isolated cell bodies maintained in prima...
متن کاملSingle channel studies of the phosphorylation of K+ channels in the squid giant axon. II. Nonstationary conditions
The effects of phosphorylation on the properties of the 20-pS channel of the squid giant axon were studied using the cut-open axon technique. Phosphorylation of the channel was achieved by photoreleasing caged ATP (inside the patch pipette) in the presence of the catalytic subunit of the protein kinase A. An inverted K+ gradient (500 K+ external parallel 5 K+ internal) was used to study the act...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 85 شماره
صفحات -
تاریخ انتشار 1985